Schwertmannite formation at cell junctions by a new filament-forming Fe(II)-oxidizing isolate affiliated with the novel genus Acidithrix.

نویسندگان

  • Jiro F Mori
  • Shipeng Lu
  • Matthias Händel
  • Kai Uwe Totsche
  • Thomas R Neu
  • Vasile Vlad Iancu
  • Nicolae Tarcea
  • Jürgen Popp
  • Kirsten Küsel
چکیده

A new acidophilic iron-oxidizing strain (C25) belonging to the novel genus Acidithrix was isolated from pelagic iron-rich aggregates ('iron snow') collected below the redoxcline of an acidic lignite mine lake. Strain C25 catalysed the oxidation of ferrous iron [Fe(II)] under oxic conditions at 25 °C at a rate of 3.8 mM Fe(II) day(-1) in synthetic medium and 3.0 mM Fe(II) day(-1) in sterilized lake water in the presence of yeast extract, producing the rust-coloured, poorly crystalline mineral schwertmannite [Fe(III) oxyhydroxylsulfate]. During growth, rod-shaped cells of strain C25 formed long filaments, and then aggregated and degraded into shorter fragments, building large cell-mineral aggregates in the late stationary phase. Scanning electron microscopy analysis of cells during the early growth phase revealed that Fe(III)-minerals were formed as single needles on the cell surface, whereas the typical pincushion-like schwertmannite was observed during later growth phases at junctions between the cells, leaving major parts of the cell not encrusted. This directed mechanism of biomineralization at specific locations on the cell surface has not been reported from other acidophilic iron-oxidizing bacteria. Strain C25 was also capable of reducing Fe(III) under micro-oxic conditions which led to a dissolution of the Fe(III)-minerals. Thus, strain C25 appeared to have ecological relevance for both the formation and transformation of the pelagic iron-rich aggregates at oxic/anoxic transition zones in the acidic lignite mine lake.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genome Sequence of the Acidophilic Ferrous Iron-Oxidizing Isolate Acidithrix ferrooxidans Strain Py-F3, the Proposed Type Strain of the Novel Actinobacterial Genus Acidithrix

Extremely acidophilic iron-oxidizing Gram-positive bacteria comprise species within the phyla Firmicutes and Actinobacteria. Here, we report the 4.02-Mb draft genome of Acidithrix ferrooxidans Py-F3, which was isolated from a stream draining an abandoned copper mine and proposed as the type species of a new genus of Actinobacteria.

متن کامل

A Novel Lineage of Proteobacteria Involved in Formation of Marine Fe-Oxidizing Microbial Mat Communities

BACKGROUND For decades it has been recognized that neutrophilic Fe-oxidizing bacteria (FeOB) are associated with hydrothermal venting of Fe(II)-rich fluids associated with seamounts in the world's oceans. The evidence was based almost entirely on the mineralogical remains of the microbes, which themselves had neither been brought into culture or been assigned to a specific phylogenetic clade. W...

متن کامل

Marinobacter subterrani, a genetically tractable neutrophilic Fe(II)-oxidizing strain isolated from the Soudan Iron Mine

We report the isolation, characterization, and development of a robust genetic system for a halophilic, Fe(II)-oxidizing bacterium isolated from a vertical borehole originating 714 m below the surface located in the Soudan Iron Mine in northern Minnesota, USA. Sequence analysis of the 16S rRNA gene places the isolate in the genus Marinobacter of the Gammaproteobacteria. The genome of the isolat...

متن کامل

Formation of green rust sulfate: a combined in situ time-resolved X-ray scattering and electrochemical study.

The mechanism of green rust sulfate (GR-SO(4)) formation was determined using a novel in situ approach combining time-resolved synchrotron-based wide-angle X-ray scattering (WAXS) with highly controlled chemical synthesis and electrochemical (i.e., Eh and pH) monitoring of the reaction. Using this approach,GR-SO(4) was synthesized under strictly anaerobic conditions by coprecipitation from solu...

متن کامل

Physiological and taxonomic description of the novel autotrophic, metal oxidizing bacterium, <i>Pseudogulbenkiania</i> sp. strain 2002

A lithoautotrophic, Fe(II) oxidizing, nitratereducing bacterium, strain 2002 (ATCC BAA-1479; =DSM 18807), was isolated as part of a study on nitrate-dependent Fe (II) oxidation in freshwater lake sediments. Here we provide an in-depth phenotypic and phylogenetic description of the isolate. Strain 2002 is a gram-negative, non-spore forming, motile, rod-shaped bacterium which tested positive for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbiology

دوره 162 1  شماره 

صفحات  -

تاریخ انتشار 2016